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SUMMARY 

Exact periodic solutions are generated for the 3-D hydrodynamic equations in linearized form. A linear 
slip condition is enforced at the bottom, based on the velocity at the bottom. It is shown that the bottom 
stress can be equivalently expressed in terms of the vertically averaged velocity, and expressions for this 
bottom stress coefficient are derived in terms of the primary parameters of the problem. As a result, the 
three-dimensional structure may be assembled from conventional solutions to (a) the 1-D vertical diffusion 
equation; and (b) the 2-D vertically averaged shallow water equations. In the latter, the bottom stress 
effects are shown to be complex and frequency-dependent, and an additional rotational term is required 
for their representation. 
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INTRODUCTION AND GOVERNING EQUATIONS 

In this paper we develop linearized analytic solutions for periodic, three-dimensional motion in 
'shallow' water, i.e. where the wavelength far exceeds the depth. The solutions incorporate the 
effects of inertia, vertical shear, gravity and rotation, and as such are intrinsically interesting as 
first-order approximations to the full non-linear motions. Our main purpose, however, is to 
provide a foundation for the testing of numerical models which will ultimately be used in realistic 
situations beyond the reach of analysis. In this context the analytic solutions constitute a spectrum 
of test cases in which the relative strengths of individual physical effects can be precisely controlled, 
and model performance quantitatively evaluated. 

The governing equations of mass and momentum conservation are given in linearized form 
by Davies.' Here we address the periodic form of these, assuming space-time variations of the 
form f(x, t )  = Re(F(x)ej"'): 

jot + V.(HV) = 0, (1) 
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where 
[(x, y )  is the complex amplitude of the free surface elevation 
V(x, y ,  z) is the complex amplitude of the horizontal velocity 
P(x, y )  is the vertical average of V 
o is the frequency 
j is the imaginary unit, J - 1 
H(x, y )  is the bathymetric depth (from undisturbed sea level to bottom) 
f is the Coriolis parameter, directed vertically 
N(x,  y ,  z) is the vertical eddy viscosity 
g is gravity 
(x, y) are the horizontal co-ordinates 
z is the vertical co-ordinate, positive upward. 

We shall enforce boundary conditions on stress at  the free surface and at the bottom: 

at z = 0 (surface), (3) 

(4) 

av 
az ' 

av 
aZ 

N-=O 

N - = kV, at  z = - H (bottom), 

where k is a real linear slip coefficient. In the horizontal, boundary conditions on [ (pressure) 
or T - n  will be enforced. 

The vertical average* of equation (2) is 

where boundary condition (3) has been incorporated. In the special case where the bottom stress 
can be related to the average velocity 

then P may be eliminated between (1) and ( 5 )  to obtain a Helmholtz-type equation for [: 

The standard procedure in this vertically homogeneous case is then to solve (7) for [, after which 
0 may be obtained from ( 5 )  and (6). A reasonable suite of such solutions is available for vertically 
homogeneous model t e ~ t i n g . ~ - ~  

In the present more realistic context, the bottom stress is related as in (4) to the bottom 
velocity, which may be considerably out of phase with 9. Several partial solutions are available in 
which (2) is solved, with boundary conditions (3) and (4), on the premise that the barotropic forcing 
term gV[ is known either a priori or from a numerical solution.6-'2 Most of these include the effect 
of wind stress at  the free surface in addition. However full analytic solutions to the equation set (1)- 
(4) appear to be unavailable. 

In the present work we provide exact solutions to equations (1)-(4). A key finding is that the 
bottom stress may still be expressed in the form (6), i.e. in terms of P. However the coefficient z must 

*Throughout we use the overbar to indicate a vertically averaged quantity. 
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now be complex, indicating a phase shift between bottom stress and V. The essential relation 
between the derived quantity z and the primary parameters o, H ,  N and k is developed and 
explored. This in turn enables one to invoke existing analytic solutions to (7) for [, following which 
V may be obtained from (2). 

We proceed as follows. First, we solve the general case without rotation and demonstrate the 
synthesis of the horizontal and vertical structure; this is the foundation of the later analyses. The 
special case 3Nlaz = 0, a very simple yet revealing test case, is then examined for illustrative 
purposes. Finally, we solve the equations with rotation and demonstrate an additional Coriolis- 
like term in the vertically averaged equations, due to bottom stress. 

VERTICAL STRUCTURE AND BOTTOM STRESS WITHOUT ROTATION 

The momentum equation in the absence of rotation is 

with boundary conditions 

-=O,  at Z=O, 
av 
az 

I (v - -=O,  av at Z =  -1, 
az 

where 
Z = zlH is the normalized depth 
K = k H / N  I - is the dimensionless slip coefficient 

Vo = - g V [ / j o  is the depth-invariant, high-frequency limit for V. 
Without knowing the gravity term V,(x,y), we may nevertheless proceed to solve (8) for the 
vertical structure at any given point (x, y) .  A particular solution to (8) is V = V,, so the general 
solution is 

v = vo + ClPl(Z) + C,Pz(Z), (10) 

where the scalar functions pl, p z  satisfy the homogeneous form of (8). The vectors C,, C, are 
independent of Z and are determined by application of (9): 

where the overdot indicates d/dZ. The full solution is therefore 

where B is the determinant of the matrix in (1 1). 
The vertical average of (12) provides V: 

Additionally, we may relate jii to their derivatives by vertically averaging the homogeneous 
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form of (8): 

To make the essential linkage to the vertically averaged equations, the bottom stress is first 
computed from (12): 

or, equivalently, by exploiting (14), 

Finally, the complex bottom stress coefficient, defined on the premise that (N/H)(dV/dZ)/i  - may 
be expressed in the form z H T ,  is obtained from (16) and (13): 

Results (12), (13) and (17) may be compactly summarized as 

with 

A )  ( P 2  -- 2,) 1 
P1-- 

K - 1  K - 1  

The identity (14) may be used to evaluate A without actually averaging the pLi. A brief collection 
of homogeneous solutions, for different viscosity structures, appears in Table I. 

Observe that the quantities A,  A and B are implicit functions of (x, y )  unless the dimensionless 
viscosity N/wH2 depends on 2 alone-otherwise, the homogeneous solutions p ( Z )  will be different 
at different horizontal locations. Further, B will depend on (x, y) unless in addition the dimension- 
less slip coefficient K = ( k H / N ) /  - is constant. For a given physical situation in which N(x, y, z), 
H(x, y )  and k(x, y )  are specified, we note that z will depend on position and frequency, the latter 
dependence being especially important for motions comprising multiple frequencies. 

Finally, note that V will generally exhibit a phase difference through the vertical. Thus, the 
actual velocity profile at a point in time, Re(VejW’), can exhibit a spiral structure when rotation 
is absent, provided the lateral boundary conditions cause the current to veer over time. 
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z 
Table I. Solutions to 

Notes 

N = N o  

N = N o ( Z  - Z0)2 

N = No(Z  - Zo)'" 

m # 2 (Reference 11) 

N = NoeaZ 
(Reference 7) 

N = No[ l  + a(Z - Zo)'] 

1 1 j o H 2  
2 -  

J ,  = Bessel function of first kind, 
order p 

p = (1 - m)/(2 - m) 

J , ,  Y, = Bessel functions of first 
and second kinds, order 1 

Co, C, arbitrary 
Convergence for la(2 - 20)21 < 1 

SYNTHESIS O F  VERTICAL AND HORIZONTAL STRUCTURE 

With the relations (1 8)-(22) a complete three-dimensional solution may be assembled in three 
steps: 

(1) Evaluate z(x, y )  for a given frequency component and viscosity structure, via equations 

(2) Use this result to obtain [ via existing solutions to (7). 
(3) Differentiate [ to obtain V, = - gV[/jw, and use this in (18) to obtain V. 

As an example, consider a simple problem of tidal oscillations near a circular island (Figure 1). 
There is no rotation, and a tide of varying amplitude and uniform phase is specified at r = r 2 .  
Bathymetry increases with radius: H = H,r2.  Viscosity is constant through the depth, which 
leads to the simple homogeneous solutions 

(20)-( 22). 

and z is readily evaluated (see equation (33) below). With an eye toward expediency, we keep z 
constant, i.e. N / H 2  and k H / N  are constants. The horizontal solution to (7) is then obtained from 
Reference 2: 

[ = (arSI + brs2)cos 8, (24) 
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Figure 1. (a, b). Geometry of island example; (c) V, at equally spaced time intervals; (d) vertical variations in V at t = 0 

where 

- S,rS1 
rsLrs2 - s rslrs2]’ b = [ S  2 2  1 1 1  2 

Differentiation of (24) then yields 

- -9  
.lor 

V, = 7[P(S,arS1 + S,brs2)cos 8 - 8(arSL + brsz)sin 81, 

from which V may be easily evaluated via (1 8). 
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Figures l(c) and l(d) display a sample of results for the following parameters: rl  = 100 km; 
r2 = 250 km; o = 1.4 x m-l.  Figure l(c) 
is a vector plot of V, at r = 200 km, 6 = n/4, at equally spaced time intervals through one period. 
In Figure l(d) we plot V versus normalized depth at t = 0 for the same (r,  0) point. At this point 
in time, the direction of V, is changing most rapidly, and the phase lead near the bottom 
produces substantial veering with depth. 

s-'; wH2/N = 10; k = co (no slip); and H ,  = 

CASE STUDY: CONSTANT VISCOSITY 

The obvious point of departure in model testing is the constant viscosity case, and we therefore 
examine this case in detail. The homogeneous solutions pi are exponentials as in (23), and may 
be expressed in terms of either the dimensionless frequency W or the well-known skin depth 6: 

where 

o H 2 .  
N 

W E -  is the dimensionless frequency 

6 = /(:) is the skin depth. 

The bottom boundary layer, wherein viscous effects are important, is roughly 46 in thickness; 
above this inertia dominates and dV/dz N 0. The dimensionless frequency is also a measure of 
depth relative to 6: 

w=2(;). 2 

Thus when W >> 1 the bulk of the flow is independent of depth. 
The vertical structure is obtained by straightforward evaluation of (1 8)-(22): 

cosh dZ 

(cosh d)( I + k tanh ~~~, 

where 

tanh I '="[' -A( 1 + ;tanhi)]. 

d2 tanh d 

(32) 

(33) 

I =  JOW) 

3N 
H T ,  = is the low-frequency7 no-slip limit of T .  
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In the low-frequency limit, tanh I -+ I - A 3 / 3  and the quasi-static solution is 

V = V o  - 1+-  =-gV[/z, [iP( :)I 

Figure 2. 

-3 -2 -1 0 1  2 3 4 

LOG N 
(a) 

- - 

-3 -2 -1 0 1 2 3 4 

LOG (W) 

(b) 
Magnitude (a) and phase (b) of V relative to the high-frequency limit V, for constant viscosity 
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with V quadratic in Z .  z is strictly real, as expected. At high frequencies, tanh approaches unity 
and we reach the high-frequency asymptote 

z,K k 
7 Z - Z -  

3 H' 

with V = P = V,. Again z is strictly real. In addition there is the possibility of an intermediate 
frequency range wherein the tanh function saturates but jA/K I is still negligible. Under these 

0 1  
l ' l ' l ' l i l ' l ' l  

-3 -2 -1 0 1  2 3 4 

LOG (W) 

-3 -2 -1 0 1  2 3 4 

LOG IWf  
(b) 

Figure 3. Magnitude (a) and phase (b) o f t  relative to the low-frequency limit z~~ = to/( l  + 3 /K) ,  for constant viscosity 
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N 

0 .2 .4 .6 .B 1 1.2 
(4 

N 

W= 100 

N 

w = 1000 

-.8 

K= . l ,  I - 
-1 

I 1 I  I l I , 1 1 1  
/ 

0 .2 .4 .6 .8 

-.05 0 .c6 .l .15 

~ A R G  (vFA 

w = w o  

Figure 4. Magnitude and phase of V relative to its vertical average V, versus depth at selected frequencies. Constant 
viscosity 
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conditions, z approaches the asymptote 

with the argument of 7 approaching 45". For very large K ,  this intermediate range can be 
significant, and extends to arbitrarily high frequencies for the no-slip case. 

In Figures 2 and 3 we plot versus frequency the amplitude and phase of 0 relative to V,, and 
of 7 relative to zo/(l + 3 / K ) ,  for various values of I<. The intermediate frequency range wherein 
arg(r) tends toward 45" is apparent. Additionally, Figure 4 shows versus depth the amplitude 
and phase of V relative to 0. The phase shift through the depth can be seen to approach 45" 
in the mid-frequency, high K range, e.g. W = 100, K = loo*. In this particular case the 
'intermediate' nature of the solution is clearly visible: a vertically uniform top layer roughly 1/2 the 
total depth, underlain by a shear layer where bottom stress is sufficient to hold the velocity near 
zero at the bottom. At W = 100, the total depth is roughly 7 times the skin depth. 

Finally, the vertically averaged force balance is illustrated in Figure 5 as a set of complex plane 
plots of the gravity, inertia and friction phasors. The transition from low- to high-frequency 
asymptotes is evident. 

To put the dimensionless groups in perspective, consider the diurnal tide (period = 12.4 h) in a 
shallow sea, 20 m deep. With typical values of N = 0.0025 m2/s and k = 0.002 m/s, we find W = 22, 
K = 16, which is clearly in the transition range. With ti! = 100 m, we have W = 560, K = 80, again 
in the range where Im(z) is significant. 

I(* I 

W..I F 4 ' - c 7  4 

I 

hG w. I 

I 

F L G  
w - 5  / 

I 

F 
c- W9DI' G 

w=m I -G 

K9D 

F' 6 
I 

F 
-0 

* L E  

K g 1 0 0  

F -6 
I 

FL 
G I 

Figure 5. Complex plane phasor balance among gravity (G), inertia (I), and friction (F) forces at various combinations 
of W and K. Constant viscosity 

*Physically, the phase lead of bottom currents in oscillatory flow is well established. See Reference 13, for instance. 
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VERTICAL STRUCTURE AND BOTTOM STRESS WITH ROTATION 

At this point it is convenient to introduce the complex scalar velocity components (u, v) and to 
explicitly write out the scalar components of the momentum equation (2), which are coupled 
by the Coriolis terms: 

a i  

(39) 

with boundary conditions (3), (4) as before. These may 
linear combinations of u and v: 

u + j v  v +  =- 
2 '  

u- jv  v -  =- 
2 .  

The same linear combinations of (38), (39) then give 

be uncoupled by introduction of two 

(40) 

(41) 

with gravity terms 

Boundary conditions are 

a v +  k H  
--=-v+, at Z =  - 1, az N 

= O  , at Z = 0, (47) 
and similarly for v-. The equations for V +  and v -  are completely uncoupled and identical 
to (8), (9) with the important introduction of o & f in place of 0. Solutions are thus 

and similarly for v-. Also, we obtain two different bottom stress coeflicients, based on the shifted 
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frequencies w k f: 

The scalar velocity components are then obtained by inverting (40), (41): 

u = v +  + v - ,  

u=,(v 1 .  -v - ) .  
J 

Successful decoupling of the horizontal and vertical structures requires expression of the 
bottom stress in terms of U, 6. The x-component of bottom stress is 

and use of (40), (41) yields the desired result 

The same procedure yields for the y-component of bottom stress 

Incorporation of (54), (55) into the vertically averaged form of (38), (39) yields equations in 
([,ti, 5) only: 

a i  
ax 

jwii - f ' 5  + z'ii = - g -, 

jw6 + f ' i i  + 7'5 = - 

with 
z+  + z -  

2 '  
=- 

(57) 

Note that the bottom stress creates a complex, Coriolis-like term in the vertically averaged 
equations, manifest in the apparent shift from f to f ' . Remarkably, though, all of the vertical 
structure is embodied in the complex coefficients 7' and f ' ,  such that solutions for [ may still 
be obtained from (7) alone. With [ in hand, v" and v -  may then be obtained as in (48) and, 
finally, u and u obtained from (51), (52). As in the rotation-free case, the essential new relationships 
are those relating z" and z -  to the physical parameters of the problem, equations (20)-(22). 

We may estimate the magnitude of f' by noting that z"  - z -  is the change in z over the 
frequency interval Am = 2 f .  Thus, 

f ' ~ f  l - j -  . [ ::I 
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For the constant viscosity, intermediate frequency case we have the simple asymptote (37) for 
z, and differentiation yields 

It appears that the bottom stress contribution to f' is in magnitude roughly 10 per cent 
or less, for this particular case. 

As a concrete example, consider the diurnal tide in a 20m sea at mid-latitude. With 
w = 1.4 x 10-4s-'; f = 10-4s-1; H = 20m; N = 0.0025m2/s and k = 0.002m/s, we find 

z f  = (2.835, 1.414) x lo-', 
z- = (1.707,0.5262) x lo-'. 

and 
z+ - z -  
~ = (0564,0.426) x lo-', 

2 

which in magnitude is 7 per cent of f .  

components of velocity: 
Finally, the v + ,  v -  have a direct, intuitive interpretation. Let ( a , ~ )  be the actual time-dependent 

a = Re(uej"'), (62) 

v = Re(uej"'). (63) 
The complex velocity a + jv may be expressed as the sum of clockwise and counterclockwise 
rotating vectors in the complex plane:" 

a + jv = V + e j w t  + v-*e-jwt 

where the asterisk indicates the complex conjugate. Ifwe let # +  = arg(v+), and # -  E arg(v-), then 
(64) 

(65) &+jV= 1 ~ + l ~ j ( o t + 6 + ) +  I V - I e - j ( w t + 4 - )  

and the current ellipse at any depth is characterized as in Reference 12 by the following parameters: 
maximum speed: 
minimumspeed: / / v + / - - ~ v - ~ ~  

1 v +  I + I v -  1 

time of max. speed: - (4+ + 4-1 
2 0  

4 + - 4 -  
2 

angle between major axis and x-axis: 

sense of rotation: counterclockwise iff / v + l  > 1v-l. 

CONCLUSIONS 

The principal objective of this paper is to provide exact solutions for three-dimensional 
hydrodynamic model testing. Such solutions may be assembled from conventional solutions to (a) 
the two-dimensional vertically averaged equations, and (b) the 1-D vertical diffusion equation. The 
key linkage is the expression of bottom stress in terms of 9. This expression, which is not part of the 
original 3-D problem formulation, is derived herein for arbitrary N(z)  in terms of the homogeneous 
solutions of the diffusion equation. 
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The bottom stress coefficient z depends upon frequency and is generally complex, indicating 
a phase difference between bottom stress and 0. For the special case aN/az = 0 this phase lead 
can be as high as 45”, and this occurs in the intermediate frequency range where the depth is 
divided roughly equally between an upper homogeneous zone and a lower boundary layer. 

When rotation is present the bottom stress contributes a complex Coriolis-like term to the 
vertically averaged equations. The magnitude of this term is roughly 10 per cent or less of the 
Coriolis acceleration and depends upon frequency; it is most pronounced in the intermediate 
frequency range. 
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